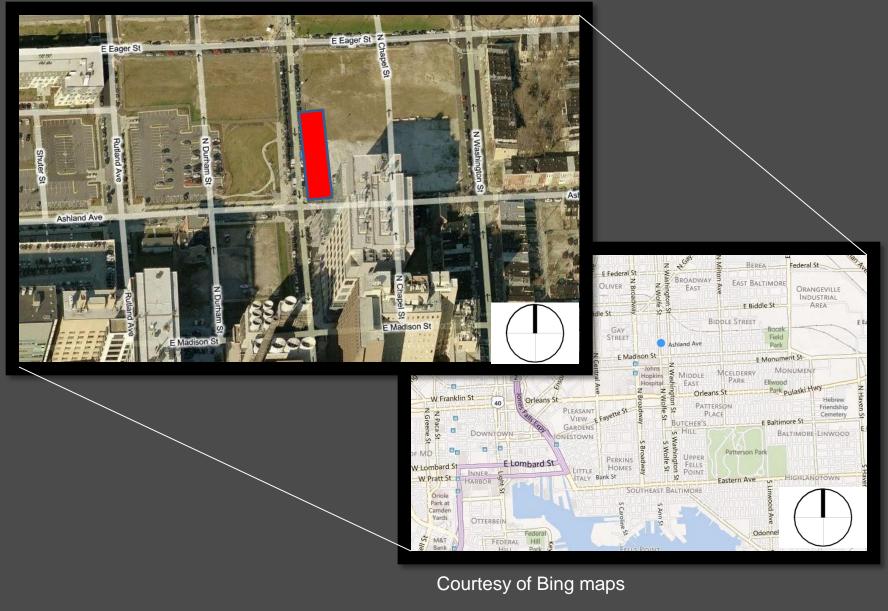
JOHN HOPKINS GRADUATE **STUDENT HOUSING**

Baltimore, Maryland

Brad Oliver – Structural Option Advisor – Professor Memari


- Introduction
- Existing Structural Systems
 - Proposal
 - New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- **Construction Management Breadth**
 - Conclusions

 Introduction 	•North Wc
 Existing Structural Systems 	•Sci
 Proposal 	•20 floor r
 New Gravity System 	
 Lateral System (Baltimore) 	•276, 211
 Lateral System (San Francisco) 	August 2
 Construction Management Breadth 	•August 2
Conduciona	

Conclusions

Project Information

- olfe Street, Baltimore Maryland ience and Technology Park
- residential tower
- sq. ft.
- 2010 June 2012
- •\$44 million (hard costs)

Introduction

- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions

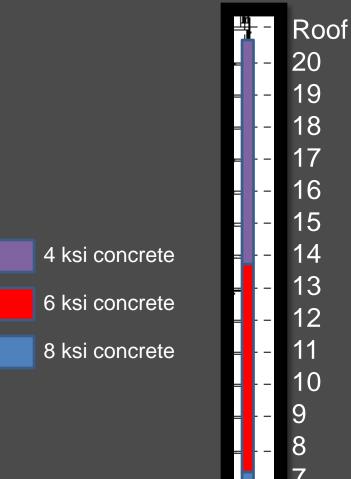
Murphy

General Information

Architecture

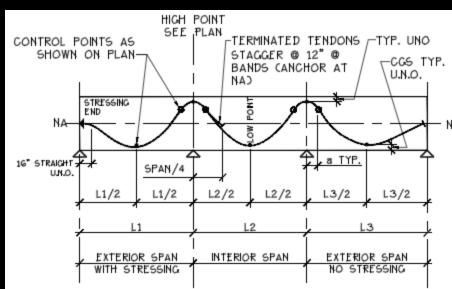
- •Owner Education Realty Trust
- •Architect Marks, Thomas Architects
- •Contractor Clark Construction
- •Structural Engineer Hope Furrer Associates
- Mechanical/Plumbing Engineer Burdette Kohler

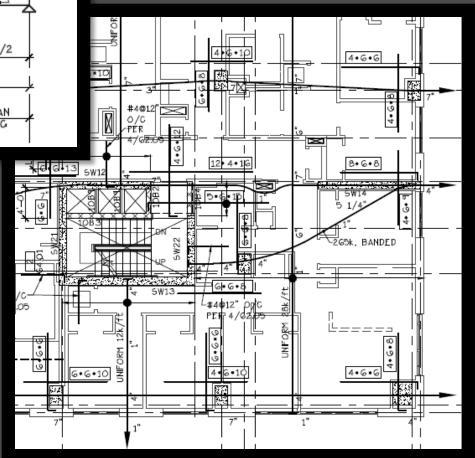
- Introduction
- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions


•20' – 25' Typical spans

•8" Post-tensioned concrete slab system (5ksi)

Gravity System

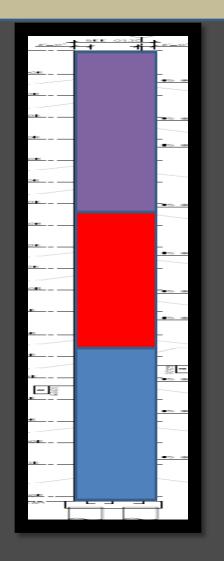




•8" Post-tensioned concrete slab system (5ksi)

•30"X20" Columns with varying strengths

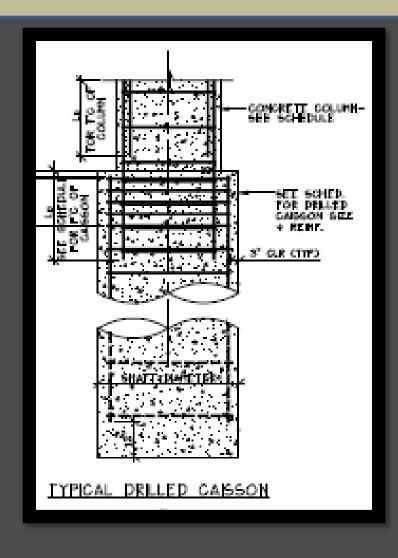
Gravity System


- Introduction
- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions

Lateral System

•12" Thick concrete shear wall with varying strengths

4 ksi concrete 6 ksi concrete 8 ksi concrete



•Drilled caisson system • 75'-91' Deep

•3'-6' Diameter

•30"X30" Grade Beams

•4 ksi concrete

- Introduction
- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions

Problem

•Move the site to San Francisco •Shear walls not permitted in SDC "D" for that height

•Composite Steel Beam gravity system

Proposed Study

Depth Solution

Solve by designing dual system:

•Eccentric Braced Frame with moment connections

Construction Management Breadth •Create new schedule and compare to existing

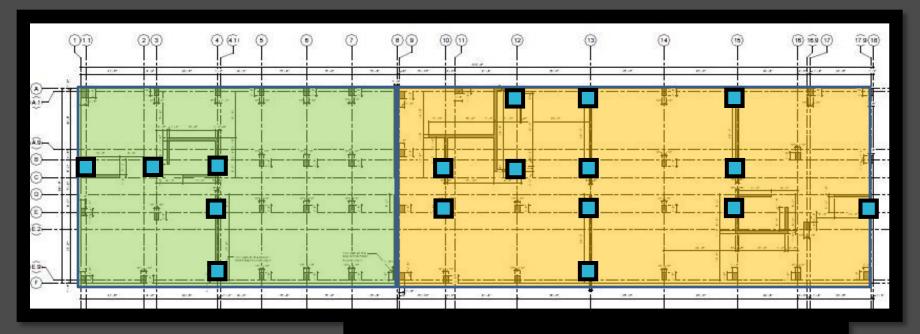
•Perform cost analysis to compare steel to concrete

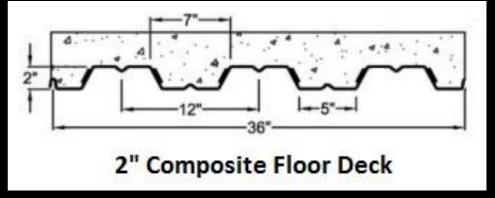
Architectural Breadth •Study two public areas that would be most affected by the additional braces. (Lounge and Fitness Rooms)

•Create renderings to visualize the space and modify the layout of the rooms

- Introduction
- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions

Project Goals

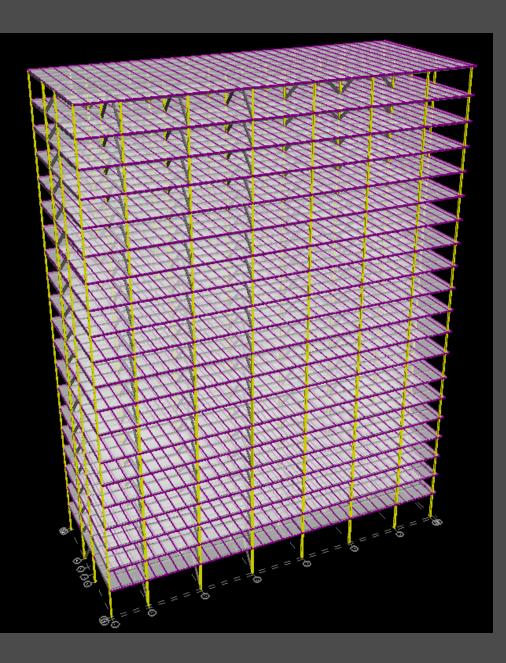

- Successfully design EBF
- Minimize height change
- Minimize architectural impact
- Reduce torsional irregularity
- Learn Ram Structural Design


- Introduction
- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions

- Typical bays of 24' x 25' and 16' x 25'
- - 2 hour fire rating designated by IBC 2006

Steel Framing

• 2" VLI composite deck with 2" topping

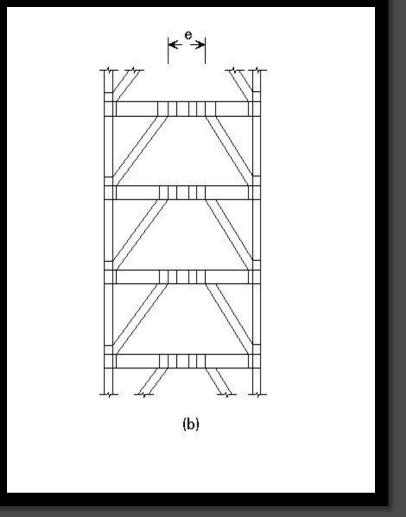

http://www.oatesmetaldeck.com/metal-roof-deck.asp

- Introduction
- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions

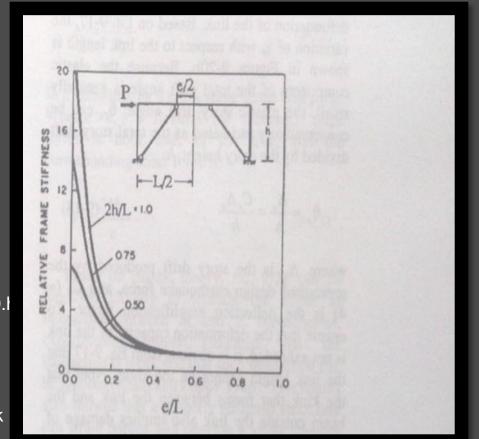
- Typical bays of 24' x 25' and 16' x 25'
- - 2 hour fire rating designated by IBC 2006
- Typical Size is W12x19

Steel Framing

• 2" VLI composite deck with 2" topping

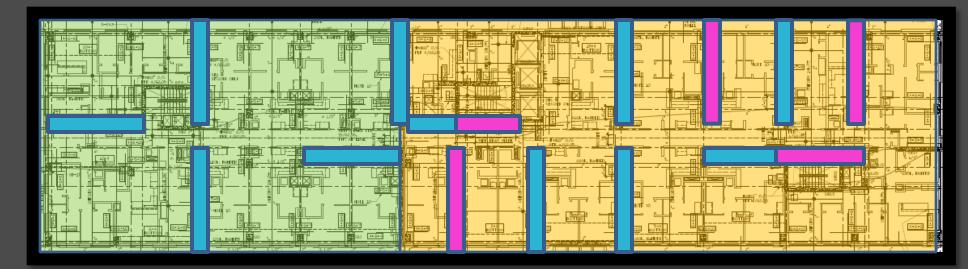

- Introduction
- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions

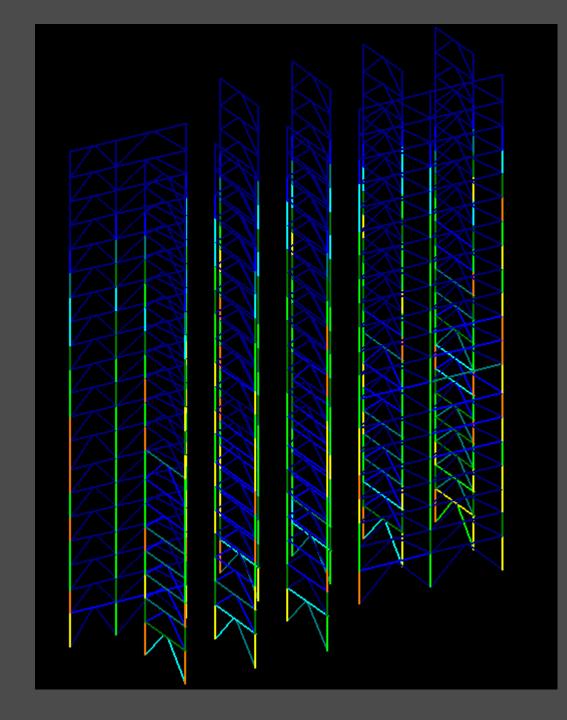
Eccentric Braced Frame


Link element is most essential part of design

Short link elements are controlled by shear

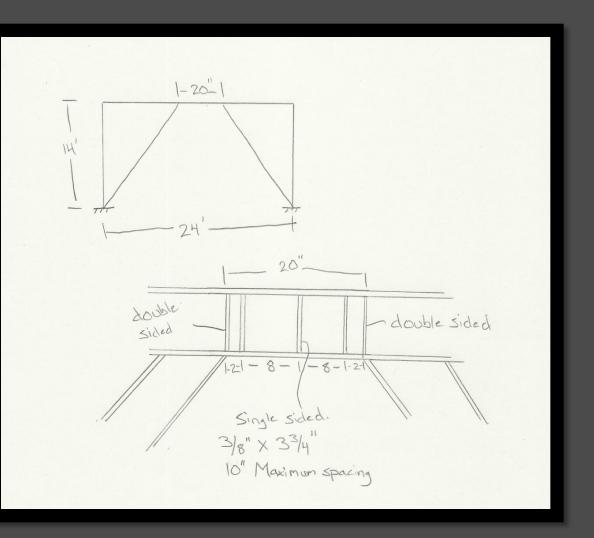
• Relatively more stiff than long elements


http://www.fgg.uni-lj.si/kmk/esdep/master/wg01b/l0720.l

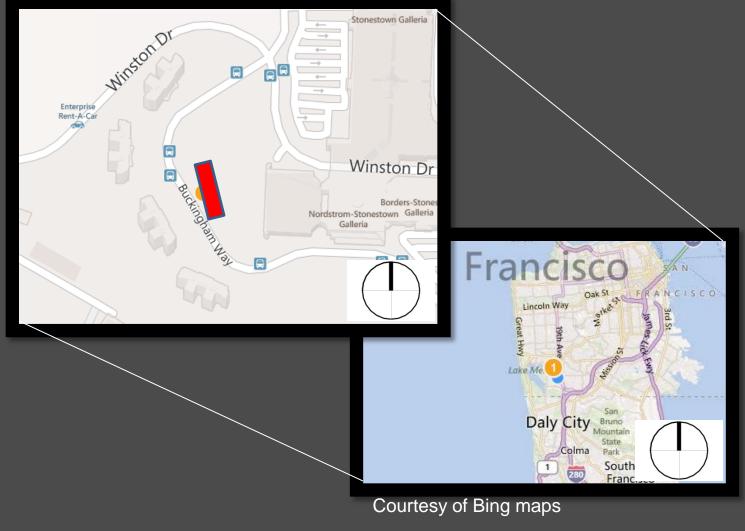

- Introduction
- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions

- First attempt 28" link length, C Shape braces
- Wind deflections 27" unacceptable
 - L/400 = 6.21"
- Final Design 20" link length, W-flange braces, more
 - frames
 - Deflection = 5.97"

Design Process



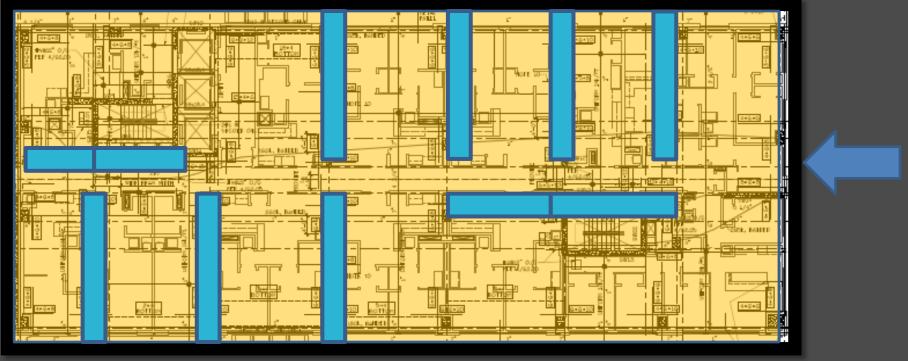
- Strength checks by Ram and hand calculations
- Seismic Provisions used as a guide
 - Web stiffener requirements calculated


Design Process

- Introduction
- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions

- San Francisco University Proposed site
- Decrease wind loads 90 mph to 85 mph
 - Base shear reduction 505 kips to 450 kips \bullet
- Seismic accelerations increased
 - Base shear increase 165 kips to 362 kips \bullet

Design Criteria

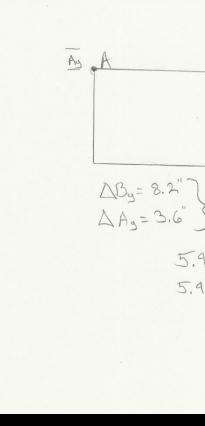


- Introduction
- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions

Results

• Earthquake loads control in the long direction

• Members needed upsized 10-20 lbs/ft


Tall tower frame layout

- Introduction
- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions

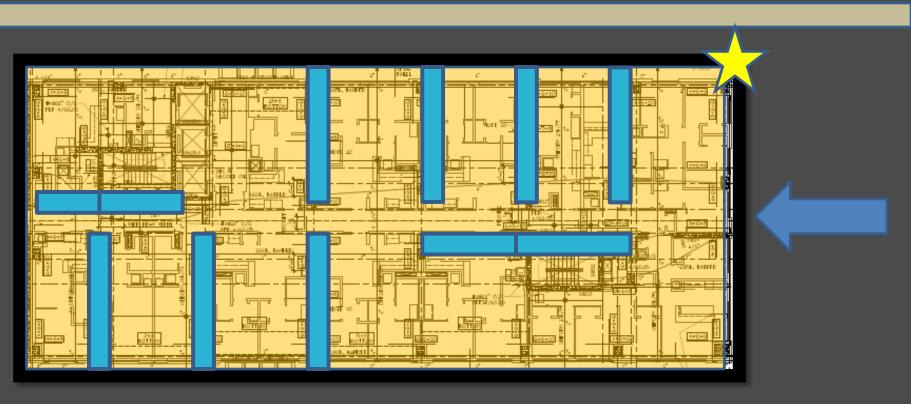
- Members needed upsized 10-20 lbs/ft
- Torsionally irregular

• Earthquake loads control in the long direction

$$B \overline{B}$$

$$A_{AVG} = \frac{8.2+3.6}{2} = 5.9''$$

$$A_{AVG} = 7.1'' < 8.2'' \therefore irregular$$


$$A'' \times 1.2 = 7.1'' < 8.2'' \therefore Not$$

$$A'' \times 1.4 = 8.24'' > 8.2'' \therefore Not$$
Extreme

- Introduction
- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions

- Design connections between diaphragm and vertical
 - members for 25% more force
- 3D model with 3 DOF at each floor
- Story Drift ratios must be taken at extreme point of
 - deflection (indicated by star)

Torsional Effects

Tall tower frame layout

- Introduction
- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions

- RS Means and Ram takeoffs used
- Steel columns were spliced every 2 levels for
 - constructability, OSHA requirements, and
 - economy

Construction Assumptions

• Crew cost adjusted to account for tower crane

- Introduction
- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions

- Splices estimated at 500 lbs of steel
- Connections estimated at 10% of steel weight
- Studs estimated at 10lbs of steel per stud
- Hard costs only (no overhead)

Cost Analysis

Existing Concrete \$5.75 million

32% Savings

Steel Structure \$4.37 million

- Introduction
- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions

Schedule Analysis

July 15, 2010

• Schedule started at foundation to top of structure

Schedule accounts for on-site activities

• Concrete wasn't able to be poured in cold weather

July 15, 2010

Over 2 months savings

Existing Concrete June 23, 2011

Steel Structure

April 12, 2011

- Introduction
- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions

Goals

•Successfully

•Minimize heig

•Minimize arch

Reduce torsio

Learn Ram St

Conclusions

	Complete?
design EBF	Yes
ght change	Yes
nitectural impact	Yes
onal irregularity	Partially
tructural Design	Yes

HOPE FURRER Associates, Inc.

Acknowledgements

AE Department and Faculty Dr. Memari

Hope Furrer and Assoc. Stephanie Slocum

Education Realty Trust Jeffrey Resetco

Marks, Thomas Architects Michael Blake

Friends and Family

MARKS, THOMAS ARCHITECTS

- Introduction
- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions

Thank You

Questions?

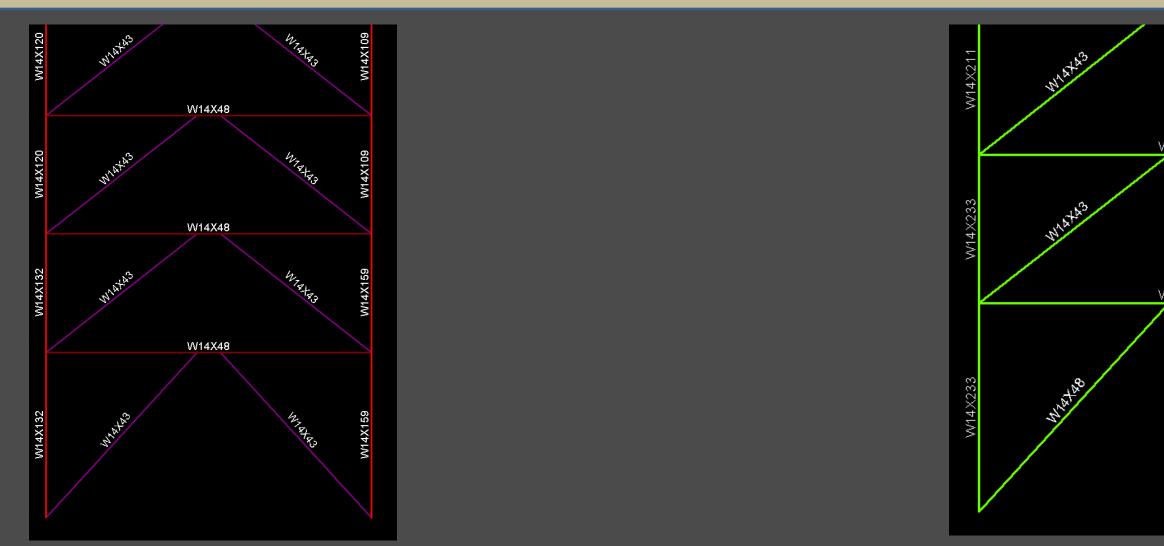
- Introduction
- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions

Period

T1 = 3.53 seconds T2 = 2.58 seconds T3 = 2.53 seconds

- Introduction
- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions

				N-S Loading	
Story	Height (in)	Allowable story Drift (inches)	Story Drift (inches)	Story Drift (inches) with Amplification	Compliant?
Roof	2484	2.64	0.6454	2.5816	ok
20	2352	2.4	0.5982	2.3928	ok
19	2232	2.4	0.5979	2.3916	ok
18	2112	2.4	0.5976	2.3904	ok
17	1992	2.4	0.5976	2.3904	ok
16	1872	2.4	0.5845	2.338	ok
15	1752	2.4	0.567	2.268	ok
14	1632	2.4	0.5422	2.1688	ok
13	1512	2.4	0.517	2.068	ok
12	1392	2.4	0.4848	1.9392	ok
11	1272	2.4	0.4538	1.8152	ok
10	1152	2.4	0.4172	1.6688	ok
9	1032	2.88	0.4532	1.8128	ok
8	888	2.4	0.33	1.32	ok
7	768	2.4	0.291	1.164	ok
6	648	2.4	0.2478	0.9912	ok
5	528	2.4	0.2067	0.8268	ok
4	408	2.4	0.1624	0.6496	ok
3	288	2.4	0.0191	0.0764	ok
2	168	3.36	0.0158	0.0632	ok
1	0	0	0	0	


Story Drift Ratio Calculations


Drift Ratios at Point B Including Accidental Torsion - Earthquake

- Introduction
- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions

Baltimore Frame

San Francisco Frame

- Introduction
- Existing Structural Systems
- Proposal
- New Gravity System
- Lateral System (Baltimore)
- Lateral System (San Francisco)
- Construction Management Breadth
- Conclusions

Beams	Duration	Cost
W8X10	11.81561667	241889.3044
W10X12	5.613666667	114922.984
W10X22	0.289666667	5930.056
W10X39	0.590509666	18668.16
W12X14	11.58125	251220.475
W12X16	1.443181818	31305.5
W12X19	9.270454545	230463.5
W14X22	2.476565657	89049.376
W14X26	0.488888889	17578.88
W14X30	2.058888889	77362.75
W12X26	1.527272727	49526.4
W12X22	0.169318182	4745.65
W12X30	0.223515716	8065.92
W12X45	0.061459667	2957.28
W12X35	0.403361345	16198.56
W14X48	6.406666667	327906.654
	- ··	
	Duration	
W12X40	4.673449612	318993.22
W12X45	0.255813953	17460.96
W12X53	0.406976744	27778.8
W12X65	0.406712734	59796.3174
W12X58	0.283757339	22095.1
W12X50	0.375968992	25662.32
W12X72	0.271186441	25369.44
W12X79	0.233400402	23733.6
W12X87	0.201219512	22245.3
W12X96	0.249744115	30107.16
W12X106	0.082474227	10912.8
W12X120	0.154166667	22710.6
W12X136	0.025289779	4164
W12X152	0.102345416	18485.76
W14X43	0.228658537	21566.25
W14X48 W14X61	0.081300813	7668
	0.101626016	9585
W14X68	0.12195122	11502
W14X74	0.020325203	1917
W14X90	0.153688525	17382
W14X99	0.081967213	10192
W14X109	0.041407867	5577.2
W14X82	0.104081633	10798.74
W14X120	0.108333333	15958.8
W14X132	0.101052632	16176
W14X159	0.025889968	4838.64
Brosse	Duration	Cost
	Duration	
W10X30 W10X33	1.940683761	50327.849
	0.123448276	3465.44
W14X43	8.233875	384291.414
Decking	Duration	Cost
2" VLI	71.53608808	494271.447
2 V LI	11.33000008	4742/1.44/
Splices	Duration	Cost
op.icco	24.4401	329355.2124
Connections	Duration	Cost
connections	Durution	323081.3498
Concrete	Duration	Cost
concrete	18.26251984	283799.5583
Fireproofing	Duration	203799.3303 Cost
Beams	Duration	159716.72
Columns		88287.8
columns		00207.8

Total Weight 1824569